Refine
Keywords
- Arzneimittel (1)
- Biotransformation (1)
- Cloud Point Extraction (1)
- Depth Profile (1)
- Ecotoxicity (1)
- Environmental organic chemistry (1)
- Environmental samples (1)
- Fischgewebe (1)
- Fractionation (1)
- Größenfraktionierung (1)
Water scarcity is already an omnipresent problem in many parts of the world, especially in sub-Saharan Africa. The dry years 2018 and 2019 showed that also in Germany water resources are finite. Projections and predictions for the next decades indicate that renewal rates of existing water resources will decline due the growing influence of climate change, but that water extraction rates will increase due to population growth. It is therefore important to find alternative and sustainable methods to make optimal use of the water resources currently available. For this reason, the reuse of treated wastewater for irrigation and recharge purposes has become one focus of scientific research in this field. However, it must be taken into account that wastewater contains so-called micropollutants, i.e., substances of anthropogenic origin. These are, e.g., pharmaceuticals, pesticides and industrial chemicals which enter the wastewater, but also metabolites that are formed in the human body from pharmaceuticals or personal care products. Through the treatment in wastewater treatment plants (WWTPs) as well as through chemical, biological and physical processes in the soil passage during the reuse of water, these micropollutants are transformed to new substances, known as transformation products (TPs), which further broaden the number of contaminants that can be detected within the whole water cycle.
Despite the fact that the presence of human metabolites and environmental TPs in untreated and treated wastewater has been known for a many years, they are rarely included in common routine analysis methods. Therefore, a first goal of this thesis was the development of an analysis method based on liquid chromatography - tandem mass spectrometry (LC-MS/MS) that contains a broad spectrum of frequently detected micropollutants including their known metabolites and TPs. The developed multi-residue analysis method contained a total of 80 precursor micropollutants and 74 metabolites and TPs of different substance classes. The method was validated for the analysis of different water matrices (WWTP influent and effluent, surface water and groundwater from a bank filtration site). The influence of the MS parameters on the quality of the analysis data was studied. Despite the high number of analytes, a sufficient number of datapoints per peak was maintained, ensuring a high sensitivity and precision as well as a good recovery for all matrices. The selection of the analytes proved to be relevant as 95% of the selected micropollutants were detected in at least one sample. Several micropollutants were quantified that were not in the focus of other current multi-residue analysis methods (e.g. oxypurinol). The relevance of including metabolites and TPs was demonstrated by the frequent detection of, e.g., clopidogrel acid and valsartan acid at higher concentrations than their precursors, the latter even being detected in samples of bank filtrate water.
By the integration of metabolites, which are produced in the body by biological processes, and biological and chemical TPs, the multi-residue analysis method is also suitable for elucidating degradation mechanisms in treatment systems for water reuse that, e.g., use a soil passage for further treatment. In the second part of the thesis, samples from two treatment systems based on natural processes were analysed: a pilot-scale above-ground sequential biofiltration system (SBF) and a full-scale soil aquifer treatment (SAT) site. In the SBF system mainly biological degradation was observed, which was clearly demonstrated by the detection of biological TPs after the treatment. The efficiency of the degradation was improved by an intermediate aeration, which created oxic conditions in the upper layer of the following soil passage. In the SAT system a combination of biodegradation and sorption processes occurred. By the different behaviour of some biodegradable micropollutants compared to the SBF system, the influence of redox conditions and microbial community was observed. An advantage of the SAT system over the SBF system was found in the sorption capacity of the natural soil. Especially positively charged micropollutants showed attenuation due to ionic interactions with negatively charged soil particles. Based on the physicochemical properties at ambient pH, the degree of removal in the investigated systems and the occurrence in the source water, a selection of process-based indicator substances was proposed.
Within the first two parts of this thesis a micropollutant was frequently detected at elevated concentrations in WWTPs effluents, which was not previously in the focus of environmental research: the antidiabetic drug sitagliptin (STG). STG showed low degradability in biological systems and thus it was investigated to what extend chemical treatment by ozonation can ensure attenuation of it. STG contains an aliphatic primary amine as the principal point of attack for the ozone molecule. There is only limited information about the behaviour of this functional group during ozonation and thus, STG served as an example for other micropollutants containing aliphatic primary amines. A pH-dependent degradation kinetic was observed due to the protonation of the primary amine at lower pH values. At pH values in the range 6 - 8, which is typical for the environment and in WWTPs, STG showed degradation kinetics in the range of 103 M-1s-1 and thus belongs to the group of readily degradable substances. However, complete degradation can only be expected at significantly higher pH values (> 9). The transformation of the primary amine moiety into a nitro group was observed as the major degradation mechanism for STG during ozonation. Other mechanisms involved the formation of a diketone, bond breakages and the formation of trifluoroacetic acid (TFA). Investigations at a pilot-scale ozonation plant using the effluent of a biological degradation of a municipal WWTP as source water confirmed the results of the laboratory studies: STG could not be removed completely even at high ozone doses and the nitro compound was formed as the main TP and remained stable during further ozonation and subsequent biological treatment. It can therefore be assumed that under realistic conditions both a residual concentration of STG and the formed main TP as well as other stable TPs such as TFA can be detected in the effluents of a WWTP consisting of conventional biological treatment followed by ozonation and subsequent biological polishing steps.
Identifizierung und Quantifizierung von Mikroplastik mittels quantitativer ¹H-NMR Spektroskopie
(2021)
Plastic, and so microplastics (MP), are globally present and represent an increasingly significant problem for the environment. In order to understand the distribution and impact of MP it is important to identify and quantify MP over a wide range of sizes and to ensure comparability of studies. However, comparability of studies is made difficult or even impossible by different MP concentration data. There still is a great need for research in the field of size-independent, quantitative analysis of MP in environmental samples, especially with regard to mass-based MP concentration information. Therefore, this thesis aims to utilize quantitative ¹H-NMR spectroscopy (qNMR) as an alternative method in MP analysis. The qNMR method is a size-independent, mass-based method which can be used as an alternative for MP analysis and has potential for routine analysis. The proof-of-concept was demonstrated for LDPE, PET and PS particles (Chapter 2). Additionally, PVC, PA, and ABS particles were tested to cover the most important polymer types for MP-analysis (Chapter 3). Moreover, using PET, PVC and PS as examples it was examined whether the qNMR method can also be transferred to the more cost-effective NoD method (Chapter 4). Results of method validation of both methods (1D and NoD) show that quantification using the qNMR method is not only possible in principle, but also shows high accuracy (88.0-110 %) and detection limits (1 – 84 µg) that lie within the environmentally relevant range. Furthermore, it was examined whether not only high-field instruments are suitable for MP analysis, but also benchtop devices (low-field instruments), which are much more cost-effective in purchase and maintenance. Increasing measurement times for PET and PS to 30 min and for PVC to 140 min, the lower measuring frequency especially concerning resolving capacity could be compensated (Chapter 4). To address the question of potential matrix effects of environmental samples, matrix effects and recovery rates of sample preparation procedures, which have been developed specifically for the application of the qNMR method were investigated using PET fibers as an example (Chapter 5). It could be shown that environmental matrices do not interfere with the quantitative analysis of MP using qNMR methods. Specific sample preparation methods developed for qNMR analysis can be used with recovery rates > 80 % for different environmental matrices (Chapter 5). Finally, first orienting investigations for the simultaneous determination of several polymer types in one sample are reported (Chapter 6).
Investigating the environmental fate of iodinated X-ray contrast media in the urban water cycle
(2010)
Iodinated X-ray contrast media (ICM) are a group of emerging contaminants which have been detected at elevated concentrations in the aquatic environment. These compounds are excreted unmetabolized into hospital wastewater, and eventually treated at wastewater treatment plants (WWTPs). The removal of ICM in WWTPs has not been very effective and therefore the ICM enter the aquatic environment via WWTP effluent discharges. Research has investigated the removal of selected ICM via abiotic and biotic processes, however limited work has attempted to determine the fate of these compounds once released into the environment. This thesis investigates the biotransformation of four selected ICM (diatrizoate, iohexol, iomeprol, and iopamidol) in aerobic soil-water and sediment-water systems as well as in different environmental matrices. Iohexol, iomeprol and iopamidol were biotransformed to several TPs in the aerobic batch systems, while no biotransformation was observed for the ionic ICM, diatrizoate. In total 34 biotransformation products (TPs) of the three non-ionic ICM were identified. The combination of semi-preparative HPLC-UV, hybrid triple quadrupole-linear ion trap mass spectrometry (Qq-LIT-MS) was found to be an accurate approach for the structural elucidation of ICM TPs. The ICM TPs resulted in microbial transformation occurring at the side chains of the parent ICM, with the iodinated aromatic ring unmodified.
Method development for the quantification of pharmaceuticals in aqueous environmental matrices
(2021)
As a consequence of the world population increase and the resulting water scarcity, water quality is the object of growing attention. In that context, organic anthropogenic molecules — often defined as micropollutants— represent a threat for water resources. Among them, pharmaceuticals are the object of particular concerns due to their permanent discharge, their increasing consumption and their effect-based structures. Pharmaceuticals are mainly introduced in the environment via wastewater treatment plants (WWTPs), along with their metabolites and the on-site formed transformation products (TPs). Once in the aquatic environment, they partition between the different environmental compartments in particular the aqueous phase, suspended particulate matter(SPM) and biota. In the last decades, pharmaceuticals have been widely investigated in the water phase. However, extreme polar pharmaceuticals have rarely been monitored due to the lack of robust analytical methods. Moreover, metabolites and TPs have seldom been included in routine analysis methods although their environmental relevance is proven. Furthermore, pharmaceuticals have been only sporadically investigated in SPM and biota and adequate multi-residue methods are lacking to obtain comprehensive results about their occurrence in these matrices. This thesis endeavors to cover these gaps of knowledge by the development of generic multi-residue methods for pharmaceuticals determination in the water phase, SPM and biota and to evaluate the occurrence and partition of pharmaceuticals into these compartments. For a complete overview, a particular focus was laid on extreme polar pharmaceuticals, pharmaceutical metabolites and TPs. In total, three innovative multi-residue methods were developed, they include analytes covering a broad range of physico-chemical properties. First, a reliable multi-residue method was developed for the analysis of extreme polar pharmaceuticals, metabolites and TPs dissolved in water. The selected analytes covered a significant range of elevated polarity and the method would be easily expendable to further analytes. This versatility could be achieved by the utilization of freeze-drying as sample preparation and zwitterionic hydrophilic interaction liquid chromatography (HILIC) in gradient elution mode. The suitability of HILIC chromatography to simultaneously quantify a large range of micropollutants in aqueous environmental samples was thoroughly studied. Several limitations were pointed out: a very complex and time-consuming method development, a very high sensitivity with regards to modification of the acetonitrile to water ratio in the eluent or the diluent and high positive matrix effects for certain analytes. However, these limitations can be overcome by the utilization of a precise protocol and appropriate labeled internal standards. They are overmatched by the benefits of HILIC which permits the chromatographic separation of extreme polar micropollutants. Investigation of environmental samples showed elevated concentrations of the analytes in the water phase. In particular, gabapentin, metformin, guanylurea and oxypurinol were measured at concentrations in the µg/L range in surface water. Subsequently, a reliable multi-residue method was established for the determination of 57 pharmaceuticals, 47 metabolites and TPs sorbed to SPM down to the low ng/g range. This method was conceived to cover a large range of polarity in particular with the inclusion of extreme polar pharmaceuticals. The extraction procedure was based on pressurized liquid extraction (PLE) followed by a clean-up via solvent exchange and detection via direct injection-reversed-phase LC-MS/MS and freeze-drying HILIC-MS/MS. Pharmaceutical sorption was examined using laboratory experiments. Derived distribution coefficients Kd varied by five orders of magnitude among the analytes and confirmed a high sorption potential for positively charged and nonpolar pharmaceuticals. The occurrence of pharmaceuticals in German rivers SPM was evaluated by the investigation of annual composite SPM samples taken at four sites at the river Rhine and one site at the river Saar between the years 2005 and 2015. It revealed the ubiquitous presence of pharmaceuticals sorbed to SPM in these rivers. In particular, positively charged analytes, even very polar and nonpolar pharmaceuticals showed appreciable concentrations. For many pharmaceuticals, a distinct correlation was observed between the annual quantities consumed in Germany and the concentrations measured in SPM. Studies of composite SPM spatial distribution permitted to get hints about specific industrial discharge by comparing the pollution pattern along the river. For the first time, these results showed the potential of SPM for the monitoring of positively charged and nonpolar pharmaceuticals in surface water. Finally, a reliable and generic multi residue method was developed to investigate 35 pharmaceuticals and 28 metabolites and TPs in fish plasma, fish liver and fish fillet. For this matrix, it was very challenging to develop an adequate clean-up allowing for the sufficient separation of the matrix disturbances from the analytes. In the final method, fish tissue extraction was performed by cell disruption followed by a non-discriminating clean-up based on silica gel solid-phase extraction(SPE) and restrictive access media (RAM) chromatography. Application of the developed method to the measurement of bream and carp tissues from German rivers revealed that even polar micropollutants such as pharmaceuticals are ubiquitously present in fish tissues. In total, 17 analytes were detected for the first time in fish tissues, including 10 metabolites/TPs. The importance of monitoring metabolites and TPs in fish tissues was confirmed with their detection at similar concentrations as their parents. Liver and fillet were shown to be appropriate for the monitoring of pharmaceuticals in fish, whereas plasma is more inconvenient due to very low concentrations and collection difficulties. Elevated concentrations of certain metabolites suggest possible formation of human metabolites in fish. Measured concentrations indicate a low bioaccumulation potential for pharmaceuticals in fish tissues.
SUMMARY
Buildings and infrastructures characterize the appearance of our cultural landscapes and provide essential services for the human society. However, they inevitably impact the natural environment e.g. by the structural change of habitats. Additionally, they potentially cause further negative environmental impacts due to the release of chemical substances from construction materials. Galvanic anodes and organic coatings regularly used for corrosion protection of steel structures are building materials of particular importance for the transport infrastructure. In direct contact with a water body or indirectly via the runoff after rainfall, numerous chemicals can be released into the environment and pose a risk to aquatic organisms. Up to now, there is no uniform investigation and evaluation approach for the assessment of the environmental compatibility of building products. Furthermore, galvanic anodes and organic coatings pose particular challenges for their ecotoxicological characterization due to their composition. Therefore, the objective of the presented thesis was the ecotoxicological assessment of emissions from galvanic anodes and protective coatings as well as the development of standardized assessment procedures for these materials.
The possible environmental hazard posed by the use of anodes on offshore installations was investigated on three trophic levels. To ensure a realistic and reliable evaluation, the experiments were carried out in natural seawater and under natural pH conditions. Moreover, the anode material and its main components zinc and aluminum were exposed while simulating a worst-case scenario. The anode material examined caused a weak inhibition of algae growth; no acute toxicity was observed on the luminescent bacteria and amphipods. However, an increase of aluminum and indium levels in the crustacean species was found. On the basis of these results, no direct threat has been identified for marine organisms from the use of galvanic aluminum anodes. However, an accumulation of metals in crustaceans and a resulting entry into the marine food web cannot be excluded.
The environmental compatibility of organic coating systems was exemplarily evaluated using a selection of relevant products based on epoxy resins (EP) and polyurethanes. For this purpose, coated test plates were dynamically leached over 64 days. The eluates obtained were systematically analyzed for their ecotoxicological effects (acute toxicity to algae and luminescent bacteria, mutagenic and estrogenic effects) and their chemical composition. In particular, the EP-based coatings caused significant bacterial toxicity and estrogen-like effects. The continuously released 4-tert-butylphenol was identified as a main contributor to these effects and was quantified in concentrations exceeding the predicted no effect concentration for freshwater in all samples. Interestingly, the overall toxicity was not governed by the content of 4-tert-butylphenol in the products but rather by the release mechanism of this compound from the investigated polymers. This finding indicates that an optimization of the composition can result in the reduction of emissions and thus of environmental impacts - possibly due to a better polymerization of the compounds.
Coatings for corrosion protection are exposed to rain, changes in temperature and sun light leading to a weathering of the polymer. To determine the influence of light-induced aging on the ecotoxicity of top coatings, the emissions and associated adverse effects of UV-irradiated and untreated EP-based products were compared. To that end, the investigation of static leachates was focused on estrogenicity and bacterial toxicity, which were detected in the classic microtiter plate format and in combination with thin-layer plates. Both materials examined showed a significant decrease of the ecotoxicological effects after irradiation with a simultaneous reduction of the 4-tert-butylphenol emission. However, bisphenol A and various structural analogues were detected as photolytic degradation products of the polymers, which also contributed to the observed effects. In this context, the identification of bioactive compounds was supported by the successful combination of in-vitro bioassays with chemical analysis by means of an effect-directed analysis. The presented findings provide important information to assess the general suitability of top coatings based on epoxy resins.
Within the scope of the present study, an investigation concept was developed and successfully applied to a selection of relevant construction materials. The adaptation of single standard methods allowed an individual evaluation of these products. At the same time, the suitability of the ecotoxicological methods used for the investigation of materials of unknown and complex composition was confirmed and the basis for a systematic assessment of the environmental compatibility of corrosion protection products was created. Against the background of the European Construction Products Regulation, the chosen approach can facilitate the selection of environmentally friendly products and contributes to the optimization of individual formulations by the simple comparison of different building materials e.g. within a product group.
Key mechanisms for the release of metal(loid)s from a construction material in hydraulic engineering
(2017)
Hydraulic engineering and thus construction materials are necessary to enable the navigability of water ways. Since, a variety of natural as well as artificial materials are used, this materials are world wide tested on a potential release of dangerous substances to prevent adverse effects on the environment. To determine the potential release, it is important to identify and to understand key mechanisms which are decisive for the release of hazardous substances. A limited correlation between the conditions used in regulatory tests and those found in environmental systems is given and hence, often the significance of results from standardised tests on construction materials is questioned, since they are not designed to mimic environmental conditions.
In Germany industrial by-products are used as armour stones in hydraulic engineering. Especially the by-product copper slag is used during the last 40 years for the construction of embankments, groynes and coastal protection. On the one hand, this material has a high density and natural resources (landscape) are protected. One the other hand, the material contains high quantities of metal(loid)s. Therefore the copper slag (product name: iron silicate stones) is very suitable as test material. Metal(loid)s examined were As, Sb and Mo as representatives for (hydr)oxide forming elements and Cd, Co, Cu, Fe, Ni, Pb and Zn were studied as representatives for elements forming cations during the release.
Questions addressed in this Thesis were: (i) can we transfer the results from batch experiments to construction scenarios under the prevalent environmental conditions, (ii) which long-term trends exist for the release of metal(loid)s from copper slags and (iii) how environmental conditions influence the leaching of metal(loid)s from water construction materials?
To answer the first question the surface depending release of the metal(loid)s from the construction materials was examined. Therefore, batch leaching experiments with different particle sizes and a constant liquid/solid ratio were performed. In a second step a comparison between different methods for the determination of the specific surface area of armour stones with a 3D laser scanning method as a reference were performed. In a last step it was possible to show that via a roughness factor the results of the specific surface area from small stones, measured with gas adsorption, can be connected with the results from armour stones, determined with an aluminium foil method. Based on calculations of the specific surface area, it was possible to significantly improve catchment scale calculation about the release of metal(loid)s and to evaluate a potential impact of construction materials in hydraulic engineering on the water chemistry of rivers and streams.
To answer the second question long-term leaching diffuse gradient in thin films supported experiments were performed for half a year. Diffuse gradients in thin films (DGT) is an in situ method to passive sample metal(loid)s in water, sediments and soils. They were used as a sink for metal(loid)s in the eluate to provide solution equilibriums. Thus the exchange of the eluent, which is performed normally in long-term experiments, was superfluous and long-term effects under undisturbed conditions were studied. The long-term leaching experiments with DGT have proven to be capable (i) to differentiate between the depletion of the material surface and the solution equilibriums and (ii) to study sorption processes with or without a further release of the analytes. This means for the practically relevant test material copper slag that: (i) the cations Cd, Co, Cu, Ni and Pb are confirmed to be released from the slag over the whole time period of six months, (ii) a surface depletion of Zn was detected, and (iii) that the (hydr)oxide forming elements As, Mo and Sb were released from the slag over the hole periods of six months but the release was masked by adsorption to Fe-oxide colloids, which were formed during the leaching experiments. It was confirmed, that sulphide minerals are the main source for long-term release of Cd, Cu, Ni, Pb and Mo.
To answer the third question short-term leaching experiments simulating environmental conditions in hydraulic engineering were performed. One factor is the salinity. The influence of this parameter was tested in batch experiments with sea salt solution (30 g/l), river Rhine water, ultra pure water and in addition with different NaCl concentration (5, 10, 20 and 30 g/l). In general, the ionic strength is an important factor for the metal(loid) release but the composition of the water (e.g. the HCO3- content) may superimpose this effect. Therefore, the concentrations of the metal(loid)s in the experiments with ultra-pure water spiked with sea salt or native river water and the ultra-pure water spiked with NaCl were significantly different. In a second experiment the influence of the environmental parameters and the interactions between the environmental parameters pH (4–10), sediment content (0 g–3.75 g), temperature (4 °C–36 °C) and ionic strength (0 g/l–30 g/l NaCl) on the release of metal(loid)s from the test material was examined. The statistical Design of Experiments (DoE) was used to study the influence of these factors as well as their interactions. All studied factors may impact the release of metal(loid)s from the test material to the eluent, whereas the release and the partitioning between sediment and eluate of metal(loid)s was impacted by interactions between the studied factors. The main processes were sorption, complexation, solubility, buffering and ion exchange. In addition, by separating the sediment from the slag after the experiments by magnetic separation, the enrichment of metal(loid)s in the sediment was visible. Thus, the sediment was the most important factor for the release of the metal(loid)s, via pH, temperature and ionic strength, because the sediment acted as a sink.
The presence of anthropogenic chemicals in the natural environment may impact both habitats and human use of natural resources. In particular the contamination of aquatic resources by organic compounds used as pharmaceuticals or household chemicals has become evident. The newly identified environmental pollutants, also known as micropollutants, often have i) unknown ecotoxicological impacts, ii) unknown partitioning mechanisms, e.g. sorption to sediments, and iii) limited regulation to control their emission. Furthermore, like any compound, micropollutants can be transformed while in the environmental matrix to unknown transformation products (TPs), which add to the number of unknown chemicals to consider and thus increase the complexity of risk management. Transformation is at the same time a natural mechanism for the removal of anthropogenic compounds, either by complete degradation (mineralisation) or to innocuous TPs. However, how transformation occurs in real-world conditions is still largely unknown. During the transport of micropollutants from household wastewater to surface water, a large amount of transformation can occur during wastewater treatment—specifically during biological nitrifying–denitrifying treatment processes. The thesis considers the systematic optimisation of laboratory investigative techniques, application of sensitive mass-spectrometry-based analysis techniques and the monitoring of full-scale wastewater treatment plants (WWTPs) to elucidate transformation processes of five known micropollutants.
The first of the five compounds investigated was the antibiotic trimethoprim. Incubation experiments were conducted at different analyte spike concentrations and different sludge to wastewater ratios. Using high-resolution mass spectrometry, a total of six TPs were identified from trimethoprim. The types of TPs formed was clearly influenced by the spike concentration. To the best of our knowledge, such impacts have not been previously described in the literature. Beginning from the lower spike concentration, a relatively stable final TP was formed (2,4-diaminopyrimidine-5-carboxylic acid, DAPC), which could account for almost all of the transformed trimethoprim quantity. The results were compared to the process in a reference reactor. Both by the detection of TPs (e.g., DAPC) and by modelling the removal kinetics, it could be concluded that only experimental results at the low spike concentrations mirrored the real reactor. The limits of using elevated spike concentrations in incubation experiments could thus be shown.
Three phenolic micropollutants, the antiseptic ortho-phenylphenol (OPP), the plastics additive bisphenol A (BPA) and the psychoactive drug dextrorphan were investigated with regard to the formation of potentially toxic, nitrophenolic TPs. Nitrite is an intermediate in the nitrification– denitrification process occurring in activated sludge and was found to cause nitration of these phenols. To elucidate the processes, incubation experiments were conducted in purified water in the presence of nitrite with OPP as the test substance. The reactive species HNO2, N2O3 and the radicals ·NO and ·NO2 were likely involved as indicated by scavenger experiments. In conditions found at WWTPs the wastewater is usually at neutral pH, and nitrite, being an intermediate, usually has a low concentration. By conducting incubation experiments inoculated with sludge from a conventional WWTP, it was found that the three phenolic micropollutants, OPP, BPA and dextrorphan were quickly transformed to biological TPs. Nitrophenolic TPs were only formed after artificial increase of the nitrite concentration or lowering of the pH. However, nitrophenolic-TPs can be formed as sample preparation artefacts through acidification or freezing for preservation, creating optimal conditions for the reaction to take place.
The final micropollutant to be studied was the pain-reliever diclofenac, a micropollutant on the EU-watch list due to ecotoxicological effects on rainbow trout. The transformation was compared in two different treatment systems, one employing a reactor with suspended carriers as a biofilm growth surface, while the other system employed conventional activated sludge. In the biofilm-based system, the pathway was found to produce many TPs each at relatively low concentration, many of which were intermediate TPs that were further degraded to unknown tertiary TPs. In the conventional activated sludge system some of the same reactions took place but all at much slower rates. The main difference between the two systems was due to different reaction rates rather than different transformation pathways. The municipal WWTPs were monitored to verify these results. In the biofilm system, a 10-day monitoring campaign confirmed an 88% removal of diclofenac and the formation of the same TPs as those observed in the laboratory experiments. The proposed environmental quality standard of 0.05 μg/L might thus be met without the need for additional treatment processes such as activated carbon filtration or ozonation.
Within aquatic environments sediment water interfaces (SWIs) are the most important areas concerning exchange processes between the water body and the sediment. These spatially restricted regions are characterized by steep biogeochemical gradients that determine the speciation and fate of natural or artificial substances. Apart from biological mediated processes (e.g., burrowing organisms, photosynthesis) the determining exchange processes are diffusion or a colloid-mediated transport. Hence, methods are required enabling to capture the fine scale structures at the boundary layer and to distinguish between the different transport pathways. Regarding emerging substances that will probably reach the aquatic environment engineered nanomaterials (ENMs) are of great concern due to their increased use in many products and applications. Since they are determined based on their size (<100 nm) they include a variety of different materials behaving differently in the environment. Once released, they will inevitable mix with naturally present colloids (< 1 μm) including natural nanomaterials.
With regard to existing methodological gaps concerning the characterization of ENMs (as emerging substances) and the investigation of SWIs (as receiving environmental compartments), the aim of this thesis was to develop, validate and apply suitable analytical tools. The challenges were to i) develop methods that enable a high resolution and low-invasive sampling of sediment pore water. To ii) develop routine-suitable methods for the characterization of metal-based engineered nanoparticles and iii) to adopt and optimize size-fractionation approaches for pore water samples of sediment depth profiles to obtain size-related information on element distributions at SWIs.
Within the first part, an available microprofiling system was combined with a novel micro sampling system equipped with newly developed sample filtration-probes. The system was thoroughly validated and applied to a freshwater sediment proving the applicability for an automatic sampling of sediment pore waters in parallel to microsensor measurements. Thereby, for the first time multi-element information for sediment depth profiles were obtained at a millimeter scale that could directly be related to simultaneously measured sediment parameters.
Due to the expected release of ENMs to the environment the aim was to develop methods that enable the investigation of fate and transport of ENMs at sediment water interfaces. Since standardized approaches are still lacking, methods were developed for the determination of the total mass concentration and the determination of the dissolved fraction of (nano)particle suspensions. Thereby, validated, routine suitable methods were provided enabling for the first time a routine-suitable determination of these two, among the most important properties regarding the analyses of colloidal systems, also urgently needed as a basis for the development of appropriate (future) risk assessments and regulatory frameworks. Based on this methodological basis, approaches were developed enabling to distinguish between dissolved and colloidal fractions of sediment pore waters. This made it possible for the first time to obtain fraction related element information for sediment depth profiles at a millimeter scale, capturing the fine scale structures and distinguishing between diffusion and colloid-mediated transport. In addition to the research oriented parts of this thesis, questions concerning the regulation of ENPs in the case of a release into aquatic systems were addressed in a separate publication (included in the Appendix) discussing the topic against the background of the currently valid German water legislation and the actual state of the research.
Thousands of chemicals from daily use are being discharged from civilization into the water cycle via different pathways. Ingredients of personal care products, detergents, pharmaceuticals, pesticides, and industrial chemicals thus find their way into the aquatic ecosystems and may cause adverse impacts on the ecology. Pharmaceuticals for instance, represent a central group of anthropogenic chemicals, because of their designed potency to interfere with physiological functions in organisms. Ecotoxicological effects from pharmaceutical burden have been verified in the past. Therapeutic groups with pronounced endocrine disrupting potentials such as steroid hormones gain increasing focus in environmental research as it was reported that they cause endocrine disruption in aquatic organisms even when exposed to environmentally relevant concentrations. This thesis considers the comprehensive investigation of the occurrence of corticosteroids and progestogens in wastewater treatment plant (WWTP) effluents and surface waters as well as the elucidation of the fate and biodegradability of these steroid families during activated sludge treatment. For the first goal of the thesis, a robust and highly sensitive analytical method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed in order to simultaneously determine the occurrence of around 60 mineralocorticoids, glucocorticoids and progestogens in the aquatic environment. A special focus was set to the compound selection due to the diversity of marketed synthetic steroids. Some analytical challenges have been approved by individual approaches regarding sensitivity enhancement and compound stabilities. These results may be important for further research in environmental analysis of steroid hormones. Reliable and low quantification limits are the perquisite for the determination of corticosteroids and progestogens at relevant concentrations due to low consumption volumes and simultaneously low effect-based trigger values. Achieved quantification limits for all target analytes ranged between 0.02 ng/L and 0.5 ng/L in surface water and 0.05 ng/L to 5 ng/L in WWTP effluents. This sensitivity enabled the detection of three mineralocorticoids, 23 glucocorticoids and 10 progestogens within the sampling campaign around Germany. Many of them were detected for the first time in the environment, particularly in Germany and the EU. To the best of our knowledge, this in-depth steroid screening provided a good overview of single steroid burden and allowed for the identification of predominantly steroids of each steroid
type analyzed for the first time. The frequent detection of highly potent synthetic steroids (e.g. triamcinolone acetonide, clobetasol propionate, betamethasone valerate, dienogest, cyproterone acetate) highlighted insufficient removal during conventional Summary wastewater treatment and indicated the need for regulation to control their emission since the steroid concentrations were found to be above the reported effect-based trigger values for biota. Overall, the study revealed reliable environmental data of poorly or even not analyzed steroids. The results complement the existing knowledge in this field but also providednew information which can beused particularly for compound prioritization in ecotoxicological research and environmental analysis. Based on the data obtained from the monitoring campaign, incubation experiments were conducted to enable the comparison of the biodegradability and transformation processes in activated sludge treatment for structure-related steroids under aerobic and standardized experimental conditions. The compounds were accurately selected to cover manifold structural moieties of commonly used glucocorticoids, including non-halogenated and halogenated steroids, their mono- and diesters, and several acetonide-type steroids. This approach allowed for a structure-based interpretation of the results. The obtained biodegradation rate constants suggested large variations in the biodegradability (half-lifes ranged from < 0.5 h to > 14 d). An increasing stability was identified in the order from non-halogenated steroids (e.g. hydrocortisone), over 9α-halogenated steroids (e.g. betamethasone), to C17-monoesters (e.g. betamethasone 17-valerate, clobetasol propionate), and finally to acetonides (e.g. triamcinolone acetonide), thus suggesting a strong relationship of the biodegradability with the glucocorticoid structure. Some explanations for this behavior have been received by identifying the transformation products (TPs) and elucidating individual transformation pathways. The results revealed the identification of the likelihood of transformation reactions depending on the chemical steroid structure for the first time. Among the identified TPs, the carboxylates (e.g. TPs of fluticasone propionate, triamcinolone acetonide) have been shown persistency in the subsequent incubation experiments. The newly identified TPs furthermore were frequently detected in the effluents of full-scale wastewater treatment plants. These findings emphasized i) the transferability of the lab-scale degradation experiments to real world and that ii) insufficient removals may cause adverse effects in the aquatic environment due to the ability of the precursor steroids and TPs to interact with the endocrine system in biota. For the last goal, the conceptual study for glucocorticoids was applied to progestogens.
Here, two sub-types of the steroid family frequently used for hormonal contraception were selected (17α-hydroxyprogesterone and 19-norstestosterone type). The progestogens showed a fast and complete degradation within six hours, and thus empathizes pronounced biodegradability. However, cyproterone acetate and dienogest Summary have been found to be more recalcitrant in activated sludge treatment. This was consistent with their ubiquitously occurrence during the previous monitoring campaign. The elucidation of TPs again revealed some crucial information regarding the observed behavior and highlighted furthermore the formation of hazardous TPs. It was shown that 19-nortestosterone type steroids are able to undergo aromatization at ring A in contact with activated sludge, leading to the formation of estrogen-like TPs with a phenolic moiety at ring A. In the case of norethisterone the formation of 17α-ethinylestradiol was confirmed, which is a well-known potent synthetic estrogen with elevated ecotoxicological potency. Thus, the results indicated for the very first time an unknown source of estrogenic compounds, particularly for 17α-ethinylestradiol. In conclusion, some steroids were found to be very stable in activated sludge treatment, others degrade well, and others which do degrade but predominantly to active TPs depending on their chemical structure. Fluorinated acetal steroids such as triamcinolone acetonide and fluocinolone acetonide are poorly biodegradable, which is reflected in high concentrations detected ubiquitously in WWTP effluents. Endogenous steroids and their most related synthetic once such as hydrocortisone, prednisolone or 17α-hydroxyprogesterone are readily biodegradable. Regardless their high influent concentrations, they are almost completely removed in conventional WWTPs. Steroids between this range have been found to form elevated quantities of TPs which are partially still active, which particularly the case for betamethasone, fluticasone propionate, cyproterone acetate or dienogest. The thesis illustrates the need for an extensive evaluation of the environmental risks and carried out that corticosteroids and progestogens merit more attention in environmental regulatory and research than it is currently the case
The sediments of surface waters are temporary or final depository of many chemical compounds, including trace metals and metalloids (metal(loid)s) from natural and anthropogenic sources. Whether they act as a source or sink of metal(loid)s depends strongly on the dynamics of the biogeochemical processes that take place at the sediment-water interface (SWI). Important information on biogeochemical processes as well as on the exposure, the fate and the transport of pollutants at the SWI can be obtained by determining chemical concentration profiles in the sediment pore water. A major challenge is to conduct experiments with a spatial resolution, which allows to adequately record existing gradients and to log all the parameters needed, to describe and better understand the complex processes at the SWIs. At the same time, it is from major importance to prevent the formation of any artifacts during sampling, which may occur due to the labile nature of the SWIs and the very steep biogeochemical gradients.
In this context, in the first part of this work, a system was developed and tested that enables the automated, minimal invasive sampling of sediment pore water of undisturbed or manipulated sediments while simultaneously recording parameters such as redox potential, oxygen content and pH value. In an incubation experiment the impact of acidification and mechanical disturbance (re-suspension) on the mobility of 13 metal(loid)s was investigated using a triple quadrupole inductively coupled plasma-mass spectrometry (ICP-QQQ-MS) multi-element approach. Most metals were released as consequence of sulfide weathering whereas mechanical disturbance had a major impact on the mobility of the oxide forming elements As, Mo, Sb, U and V. Additionally, options were demonstrated to address with the system the size fractionation of metal(loid)s in pore water samples and the speciation of As(III/V) and Sb(III/V).
In the second part, the focus, with a similar experimental design, was placed on the processes leading to the release of metal(loid)s. For this purpose, two incubation experiments with different oxygen supply were conducted in parallel. For the first time the nonmetals carbon, phosphorus and sulfur were analyzed simultaneous to 13 metal(loid)s in sediment pore water by ICP-QQQ-MS. Throughout the experiment metal(loid) size fractionation was monitored. It was confirmed that resuspension promotes the mobility of metalloids such as As, Sb and V, while the release of most metals was largely attributed to pyrite weathering. The colloidal (0.45-16 μm) contribution in terms of mobilization was only relevant for a few elements.
Finally, the sampling system was used as part of a new approach to sediment risk assessment. Undisturbed sediment cores from differently contaminated positions in the Trave estuary were examined, considering 16 metal(loid)s, the non-metals C, P and S and the ions NH4+, PO43- and SO42-. By the first in-depth comparison with in-situ dialysis-based pore water sampling the ability of the suction-based approach to represent field conditions was proven. The pore water studies together with supplementing resuspension experiments in bio-geochemical microcosms and sequential extraction identified the most “pristine” sediment of the study area as posing the greatest risk of metal(loid) release. However, the potentially released amounts per kg of sediment are only a few parts per thousand of the average daily loads of the Trave river.