• search hit 100 of 110
Back to Result List

Classification of Facial Expressions Based on Visual Features

  • Autonomous systems such as robots already are part of our daily life. In contrast to these machines, humans an react appropriately to their counterparts. People can hear and interpret human speech, and interpret facial expressions of other people. This thesis presents a system for automatic facial expression recognition with emotion mapping. The system is image-based and employs feature-based feature extraction. This thesis analyzes the common steps of an emotion recognition system and presents state-of-the-art methods. The approach presented is based on 2D features. These features are detected in the face. No neutral face is needed as reference. The system extracts two types of facial parameters. The first type consists of distances between the feature points. The second type comprises angles between lines connecting the feature points. Both types of parameters are implemented and tested. The parameters which provide the best results for expression recognition are used to compare the system with state-of-the-art approaches. A multiclass Support Vector Machine classifies the parameters. The results are codes of Action Units of the Facial Action Coding System. These codes are mapped to a facial emotion. This thesis addresses the six basic emotions (happy, surprised, sad, fearful, angry, and disgusted) plus the neutral facial expression. The system presented is implemented in C++ and is provided with an interface to the Robot Operating System (ROS).
  • Autonome Systeme, wie Roboter, sind bereits Teil unseres täglichen Lebens. Eine Sache, in der Menschen diesen Maschinen überlegen sind, ist die Fähigkeit, auf sein Gegenüber angemessen zu reagieren. Dies besteht nicht nur aus der Fähigkeit zu hören, was eine Person sagt, sondern auch daraus, ihre Mimik zu erkennen und zu interpretieren. In dieser Bachelorarbeit wird ein System entwickelt, welches automatisch Gesichtsausdrücke erkennt und einer Emotion zuordnet. Das System arbeitet mit statischen Bildern und benutzt merkmalsbasierte Methoden zur Beschreibung von Gesichtsdaten. In dieser Arbeit werden gebräuchliche Schritte analysiert und aktuelle Methoden vorgestellt. Das beschriebene System basiert auf 2D-Merkmalen. Diese Merkmale werden im Gesicht detektiert. Ein neutraler Gesichtsausdruck wird nicht als Referenzbild benötigt. Das System extrahiert zwei Arten von Gesichtsparametern. Zum einen sind es Distanzen, die zwischen den Merkmalspunkten liegen. Zum anderen sind es Winkel, die zwischen den Linien liegen, die die Merkmalspunkte verbinden. Beide Arten von Parametern werden implementiert und getestet. Der Parametertyp, der die besten Ergebnisse liefert, wird schließlich in dem System benutzt. Eine Support Vector Machine (SVM) mit mehreren Klassen klassifiziert die Parameter. Das Ergebnis sind Kennzeichen von Action Units des Facial Action Coding Systems (FACS). Diese Kennzeichen werden einer Gesichtsemotion zugeordnet. Diese Arbeit befasst sich mit den sechs Basisgesichtsausdrücken (glücklich, überrascht, traurig, ängstlich, wütend und angeekelt) plus dem neutralen Gesichtsausdruck. Das vorgestellte System wird in C++ implementiert und an das Robot Operating System (ROS) angebunden.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Alruna Veith
URN:urn:nbn:de:kola-7373
Referee:Dietrich Paulus, Viktor Seib
Document Type:Bachelor Thesis
Language:English
Date of completion:2013/05/22
Date of publication:2013/05/22
Publishing institution:Universität Koblenz-Landau, Campus Koblenz, Universitätsbibliothek
Granting institution:Universität Koblenz-Landau, Universitätsbibliothek
Release Date:2013/05/22
Number of pages:xvi, 132
Institutes:Fachbereich 4 / Fachbereich 4
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):License LogoEs gilt das deutsche Urheberrecht: § 53 UrhG