Refine
Year of publication
Document Type
- Master's Thesis (190) (remove)
Keywords
- Augmented Reality (3)
- Computersimulation (3)
- Datenschutz (3)
- Internet of Things (3)
- virtual reality (3)
- Beschaffung (2)
- E-Partizipation (2)
- E-participation (2)
- Simulation (2)
- Sport (2)
Institute
- Institut für Computervisualistik (46)
- Fachbereich 4 (34)
- Institut für Management (33)
- Institut für Wirtschafts- und Verwaltungsinformatik (27)
- Institute for Web Science and Technologies (19)
- Institut für Informatik (14)
- Institut für Softwaretechnik (6)
- Fachbereich 1 (1)
- Fachbereich 3 (1)
- Fachbereich 6 (1)
This thesis explores and examines the effectiveness and efficacy of traditional machine learning (ML), advanced neural networks (NN) and state-of-the-art deep learning (DL) models for identifying mental distress indicators from the social media discourses based on Reddit and Twitter as they are immensely used by teenagers. Different NLP vectorization techniques like TF-IDF, Word2Vec, GloVe, and BERT embeddings are employed with ML models such as Decision Tree (DT), Random Forest (RF), Logistic Regression (LR) and Support Vector Machine (SVM) followed by NN models such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) to methodically analyse their impact as feature representation of models. DL models such as BERT, DistilBERT, MentalRoBERTa and MentalBERT are end-to-end fine tuned for classification task. This thesis also compares different text preprocessing techniques such as tokenization, stopword removal and lemmatization to assess their impact on model performance. Systematic experiments with different configuration of vectorization and preprocessing techniques in accordance with different model types and categories have been implemented to find the most effective configurations and to gauge the strengths, limitations, and capability to detect and interpret the mental distress indicators from the text. The results analysis reveals that MentalBERT DL model significantly outperformed all other model types and categories due to its specific pretraining on mental data as well as rigorous end-to-end fine tuning gave it an edge for detecting nuanced linguistic mental distress indicators from the complex contextual textual corpus. This insights from the results acknowledges the ML and NLP technologies high potential for developing complex AI systems for its intervention in the domain of mental health analysis. This thesis lays the foundation and directs the future work demonstrating the need for collaborative approach of different domain experts as well as to explore next generational large language models to develop robust and clinically approved mental health AI systems.
Im Rahmen der Masterthesis „Analyse des Managements invasiver gebietsfremder Arten am Beispiel des Roten Amerikanischen Sumpfkrebses (Procambarus clarkii) während und im Anschluss an notwendige Sanierungsarbeiten am Hochwasserrückhaltebecken Breitenauer See östlich von Heilbronn“ wurde das Vorkommen des invasiven Roten Amerikanischen Sumpfkrebses am Breitenauer See umfangreich kartiert. Auch die nahegelegene Sulm mit bekanntem Vorkommen des Signalkrebses sowie das Nonnenbachsystem mit bekanntem Vorkommen des Steinkrebses wurden erfasst. Der Fokus lag auf der Beantwortung dreier Kernfragen. Zunächst wurde untersucht, ob und wie ein dauerhaftes IAS-Management (invasive alien species) des Roten Amerikanischen Sumpfkrebses am Breitenauer See nachhaltig durchgeführt werden kann, um inakzeptable ökologische Effekte zu vermeiden. Die zweite Fragestellung bezog sich auf die Wirksamkeit ergriffener Risikomanagementmaßnahmen während der Ablassaktion des Breitenauer Sees. Abschließend war fraglich, wie sich der Rote Amerikanische Sumpfkrebs verhält, wenn sein besiedeltes Gewässer trockenfällt.
Artificial neural networks is a popular field of research in artificial intelli-
gence. The increasing size and complexity of huge models entail certain
problems. The lack of transparency of the inner workings of a neural net-
work makes it difficult to choose efficient architectures for different tasks.
It proves to be challenging to solve these problems, and with a lack of in-
sightful representations of neural networks, this state of affairs becomes
entrenched. With these difficulties in mind a novel 3D visualization tech-
nique is introduced. Attributes for trained neural networks are estimated
by utilizing established methods from the area of neural network optimiza-
tion. Batch normalization is used with fine-tuning and feature extraction to
estimate the importance of different parts of the neural network. A combi-
nation of the importance values with various methods like edge bundling,
ray tracing, 3D impostor and a special transparency technique results in a
3D model representing a neural network. The validity of the extracted im-
portance estimations is demonstrated and the potential of the developed
visualization is explored.
Digital transformation is a prevailing trend in the world, especially in dynamic Asia. Vietnam has recorded remarkable changes in the economy as domestic enterprises have made new strides in the digital transformation process. MB Bank, one of the prestigious financial groups in Vietnam, also takes advantage of digital transformation to have the opportunity to break through to become a large-scale technology enterprise with many factors such as improving customer experience, increasing customer base and increasing customer satisfaction. enhance competitiveness, build trust and loyalty for customers. However, in the process of converting MB, there are also many challenges that require banks to have appropriate policies to handle. It can be said that MB Bank is a typical case study of digital transformation in the banking sector in Vietnam.
Digital Transformation Maturity of Vietnam Aviation Industry: The Effect of Organizational Readiness
(2023)
The paper studies the digital transformation maturity in the context of the aviation industry in Vietnam. Digital transformation can mean enhancing existing processes, finding new opportunities within existing business domains, or finding new opportunities outside existing business domains. In the era of post Covid-19, digital transformation will play a vital role in the recovery with the support from digital technology to leverage the communication and implementation of new projects or changes.
Digital transformation and digital transformation maturity sometimes are used indistinguishing, but they are two different definitions. This paper will further explain the differences and will apply digital transformation maturity as a scale for the digital transformation in the report.
Due to the lack of experiment in the relationship between digital transformation maturity and the organizational readiness, the study will explore four components of organizational readiness, including digital leadership, digital culture, digital capabilities, and digital partnering.
FinTech is deemed to be an underexplored phenomenon even in academic and real environments. Among (1) “Sustainable FinTech” – the application of information technology as innovation in established financial services providers’ business operation; and (2) “Disruptive FinTech” – the provision of financial products and services by non-incumbents which in most cases are information technology entrepreneurs, the former receives more attention. In order to contribute to Disruptive FinTech category, the thesis strive to examine Entrepreneurial Strategy framework applied for technology players taking part in Vietnam financial market.
Challenges of Implementing Innovation Strategies at Large Organizations: A case of Lotte Group
(2023)
For many decades, one of the most important focuses of research has been on determining whether or not there is a correlation between the size of an organization and its level of innovation. Unlike small companies, large companies often have well-established structure that are hard to change and change managements seems to be much more difficult especially related to innovation. Nevertheless, there are many examples to prove the opposites. Some large organization like Apple, Amazon... always show great innovation efforts and keep changing in a much positive way. Therefore, the aim of this thesis is to discuss of how large organization can be able to implement innovation when having much drawbacks compare to SMEs. Through the use of a qualitative research approach, researcher was able to explore essential information on the innovation strategies that large companies are using in order to innovate and how they could overcome existing challenges by studying the working process of Lotte Group – one of the biggest companies in Korea.
The paper is a study focusing on exploring which factors and examining the impact of those factors influencing the entrepreneurial intention among students in the Construction industry, specifically among students of Hanoi Construction University and Hanoi Architecture University. The study also mentions some solution of this findings for entrepreneurship in the Construction field in Vietnam that the author might think of based on this research work for future study. The Theory of planned behavior is used as the theoritical framework for this study. Both qualitative and quantitative methods are employed. The questionaire will be conducted among students of the two universities mentioned above. Then, an exploratory factor analysis (EFA) will performed to test the validity of the constructs. The research findings provide factors and their impact factors influencing the entrepreneurial intention and propose some solutions to improve the entrepreneurship in the Construction field in Vietnam.
Predictive Process Monitoring is becoming more prevalent as an aid for organizations to support their operational processes. However, most software applications available today require extensive technical know-how by the operator and are therefore not suitable for most real-world scenarios. Therefore, this work presents a prototype implementation of a Predictive Process Monitoring dashboard in the form of a web application. The system is based on the PPM Camunda Plugin presented by Bartmann et al. (2021) and allows users to easily create metrics, visualizations to display these metrics, and dashboards in which visualizations can be arranged. A usability test is with test users of different computer skills is conducted to confirm the application’s user-friendliness.
In this thesis the possibilities for real-time visualization of OpenVDB
files are investigated. The basics of OpenVDB, its possibilities, as well
as NanoVDB and its GPU port, were studied. A system was developed
using PNanoVDB, the graphics API port of OpenVDB. Techniques were
explored to improve and accelerate a single ray approach of ray tracing.
To prove real-time capability, two single scattering approaches were
also implemented. One of these was selected, further investigated and
optimized to achieve interactive real-time rendering.
It is important to give artists immediate feedback on their adjustments, as
well as the possibility to change all parameters to ensure a user friendly
creation process.
In addition to the optical rendering, corresponding benchmarks were
collected to compare different improvement approaches and to prove
their relevance. Attention was paid to the rendering times and memory
consumption on the GPU to ensure optimal use. A special focus, when
rendering OpenVDB files, was put on the integrability and extensibility of
the program to allow easy integration into an existing real-time renderer
like U-Render.