We present a non-linear camera pose estimator, which is able to handle a combined input of point and line feature correspondences. For three or more correspondences, the estimator works on any arbitrary number and choice of the feature type, which provides an estimation of the pose on a preferably small and flexible amount of 2D-3D correspondences. We also give an analysis of different minimization techniques, parametrizations of the pose data, and of error measurements between 2D and 3D data. These will be tested for the usage of point features, lines and the combination case. The result shows the most stable and fast working non-linear parameter set for pose estimation in model-based tracking.