000 Informatik, Informationswissenschaft, allgemeine Werke
Refine
Document Type
- Master's Thesis (6) (remove)
Keywords
- DMN (1)
- Internet of Things (1)
- Knowledge Engineering (1)
- MSR (1)
- Maschinelles Lernen (1)
- Software Repositories (1)
- Sustainability (1)
- Verification (1)
- machine learning (1)
- tracking (1)
The industry standard Decision Model and Notation (DMN) has enabled a new way for the formalization of business rules since 2015. Here, rules are modeled in so-called decision tables, which are defined by input columns and output columns. Furthermore, decisions are arranged in a graph-like structure (DRD level), which creates dependencies between them. With a given input, the decisions now can be requested by appropriate systems. Thereby, activated rules produce output for future use. However, modeling mistakes produces erroneous models, which can occur in the decision tables as well as at the DRD level. According to the Design Science Research Methodology, this thesis introduces an implementation of a verification prototype for the detection and resolution of these errors while the modeling phase. Therefore, presented basics provide the needed theoretical foundation for the development of the tool. This thesis further presents the architecture of the tool and the implemented verification capabilities. Finally, the created prototype is evaluated.
Business Process Querying (BPQ) is a discipline in the field of Business Process Man- agement which helps experts to understand existing process models and accelerates the development of new ones. Its queries can fetch and merge these models, answer questions regarding the underlying process, and conduct compliance checking in return. Many languages have been deployed in this discipline but two language types are dominant: Logic-based languages use temporal logic to verify models as finite state machines whereas graph-based languages use pattern matching to retrieve subgraphs of model graphs directly. This thesis aims to map the features of both language types to features of the other to identify strengths and weaknesses. Exemplarily, the features of Computational Tree Logic (CTL) and The Diagramed Modeling Language (DMQL) are mapped to one another. CTL explores the valid state space and thus is better for behavioral querying. Lacking certain structural features and counting mechanisms it is not appropriate to query structural properties. In contrast, DMQL issues structural queries and its patterns can reconstruct any CTL formula. However, they do not always achieve exactly the same semantic: Patterns treat conditional flow as sequential flow by ignoring its conditions. As a result, retrieved mappings are invalid process execution sequences, i.e. false positives, in certain scenarios. DMQL can be used for behavioral querying if these are absent or acceptable. In conclusion, both language types have strengths and are specialized for different BPQ use cases but in certain scenarios graph-based languages can be applied to both. Integrating the evaluation of conditions would remove the need for logic-based languages in BPQ completely.
The Internet of Things (IoT) is a fast-growing, technological concept, which aims to integrate various physical and virtual objects into a global network to enable interaction and communication between those objects (Atzori, Iera and Morabito, 2010). The application possibilities are manifold and may transform society and economy similarly to the usage of the internet (Chase, 2013). Furthermore, the Internet of Things occupies a central role for the realisation of visionary future concepts, for example, Smart City or Smart Healthcare. In addition, the utilisation of this technology promises opportunities for the enhancement of various sustainability aspects, and thus for the transformation to a smarter, more efficient and more conscious dealing with natural resources (Maksimovic, 2017). The action principle of sustainability increasingly gains attention in the societal and academical discourse. This is reasoned by the partly harmful consumption and production patterns of the last century (Mcwilliams et al., 2016). Relating to sustainability, the advancing application of IoT technology also poses risks. Following the precautionary principle, these risks should be considered early (Harremoës et al., 2001). Risks of IoT for sustainability include the massive amounts of energy and raw materials which are required for the manufacturing and operation of IoT objects and furthermore, the disposal of those objects (Birkel et al., 2019). The exact relations in the context of IoT and sustainability are insufficiently explored to this point and do not constitute a central element within the discussion of this technology (Behrendt, 2019). Therefore, this thesis aims to develop a comprehensive overview of the relations between IoT and sustainability.
To achieve this aim, this thesis utilises the methodology of Grounded Theory in combination with a comprehensive literature review. The analysed literature primarily consists of research contributions in the field of Information Technology (IT). Based on this literature, aspects, solution approaches, effects and challenges in the context of IoT and sustainability were elaborated. The analysis revealed two central perspectives in this context. IoT for Sustainability (IoT4Sus) describes the utilisation and usage of IoT-generated information to enhance sustainability aspects. In contrast, Sustainability for IoT (Sus4IoT) fo-cuses on sustainability aspects of the applied technology and highlights methods to reduce negative impacts, which are associated with the manufacturing and operation of IoT. Elaborated aspects and relations were illustrated in the comprehensive CCIS Framework. This framework represents a tool for the capturing of relevant aspects and relations in this context and thus supports the awareness of the link between IoT and sustainability. Furthermore, the framework suggests an action principle to optimise the performance of IoT systems regarding sustainability.
The central contribution of this thesis is represented by the providence of the CCIS Framework and the contained information regarding the aspects and relations of IoT and sustainability.
Tracking is an integral part of many modern applications, especially in areas like autonomous systems and Augmented Reality. For performing tracking there are a wide array of approaches. One that has become a subject of research just recently is the utilization of Neural Networks. In the scope of this master thesis an application will be developed which uses such a Neural Network for the tracking process. This also requires the creation of training data as well as the creation and training of a Neural Network. Subsequently the usage of Neural Networks for tracking will be analyzed and evaluated. This includes several aspects. The quality of the tracking for different degrees of freedom will be checked as well as the the impact of the Neural Network on the applications performance. Additionally the amount of required training data is investigated, the influence of the network architecture and the importance of providing depth data as part of the networks input. This should provide an insight into how relevant this approach could be for its adoption in future products.
This thesis proposes the use of MSR (Mining Software Repositories) techniques to identify software developers with exclusive expertise about specific APIs and programming domains in software repositories. A pilot Tool for finding such
“Islands of Knowledge” in Node.js projects is presented and applied in a case study to the 180 most popular npm packages. It is found that on average each package has 2.3 Islands of Knowledge, which is possibly explained by the finding that npm packages tend to have only one main contributor. In a survey, the maintainers of 50 packages are contacted and asked for opinions on the results produced by the Tool. Together with their responses, this thesis reports on experiences made with the pilot Tool and how future iterations could produce even more accurate statements about programming expertise distribution in developer teams.
In recent years head mounted displays (HMD) and their abilities to create virtual realities comparable with the real world moved more into the focus of press coverage and consumers. The reason for this lies in constant improvements in available computing power, miniaturisation of components as well as the constantly shrinking power consumption. These trends originate in the general technical progress driven by advancements made in smartphone sector. This gives more people than ever access to the required components to create these virtual realities. However at the same time there is only limited research which uses the current generation of HMDs especially when comparing the virtual and real world against each other. The approach of this thesis is to look into the process of navigating both real and virtual spaces while using modern hardware and software. One of the key areas are the spatial and peripheral perception without which it would be difficult to navigate a given space. The influence of prior real and virtual experiences on these will be another key aspect. The final area of focus is the influence on the emotional state and how it compares to the real world. To research these influences a experiment using the Oculus Rift DK2 HMD will be held in which subjects will be guided through a real space as well as a virtual model of it. Data will be gather in a quantitative manner by using surveys. Finally, the findings will be discussed based on a statistical evaluation. During these tests the different perception of distances and room size will the compared and how they change based on the current reality. Furthermore, the influence of prior spatial activities both in the real and the virtual world will looked into. Lastly, it will be checked how real these virtual worlds are and if they are sufficiently sophisticated to trigger the same emotional responses as the real world.