Fachbereich 7
Refine
Document Type
- Bachelor Thesis (1) (remove)
Keywords
- bait-lamina test (1)
- biodegradation (1)
- phenolic compounds (1)
- soil water repellency (1)
- water re-use (1)
During olive oil production, large amounts of olive mill wastewater (OMW) are generated within a short period of time. OMW has a high nutrient content and could serve as fertilizer when applied on land. However, its fatty and phenolic constituents have adverse effects on soil properties. It is still unknown how seasonal fluctuations in temperature and precipitation influence the fate and effect of OMW components on soil properties in a long-term perspective. An appropriate application season could mitigate negative consequences of OMW while preserving its beneficial effects. In order to investigate this, 14 L OMW m-2 were applied to different plots of an olive plantation in winter, spring, and summer respectively. Hydrological soil properties (water drop penetration time, hydraulic conductivity, dynamic contact angle), physicochemical parameters (pH, EC, soluble ions, phenolic compounds, organic matter), and biological degradation (bait-lamina test) were measured to assess the soil state after OMW application. After one rainy season following OMW application, the soil quality of summer treatments significantly decreased compared to the control. This was particularly apparent in a three-times lower biodegradation performance, ten-fold higher soil water repellency, and a four-fold higher content of phenolic compounds. The soil properties of winter treatments were comparable to the control, which demonstrated the recovery potential of the soil ecosystem. Spring treatments resulted in an intermediate response compared to summer and winter treatments, but without any precipitation following OMW application. Significant accumulation or leaching effects to deeper soil were not observed. Therefore, the direct application of legally restricted OMW amounts to soil is considered acceptable during the moist seasons. Further research is needed to quantify the effect of spring treatments and to gain further insight into the composition and kinetics of organic OMW constituents in the soil.