Fachbereich 7
Refine
Year of publication
- 2019 (5) (remove)
Keywords
- Weinbau (2)
- Densimetric Measurement (1)
- Dichtemessung (1)
- Dredging (1)
- Freeze Coring (1)
- Gefrierkernverfahren (1)
- Minimalschnitt (1)
- Nachhaltigkeit (1)
- Nachhaltigkeitsbericht (1)
- Nassbaggerung (1)
The bio-insecticide Bacillus thuringiensis israelensis (Bti) has worldwide become the most commonly used agentin mosquito control programs that pursue two main objectives: the control of vector-borne diseases and the reduction of nuisance, mainly coming frommosquitoes that emerge in large quantities from seasonal wetlands. The Upper Rhine Valley, a biodiversity hotspot in Germany, has been treated withBti for decades to reduce mosquito-borne nuisance and increase human well-being.Although Btiis presumed to be an environmentally safe agent,adverse effects on wetland ecosystems are still a matter of debate especially when it comes to long-term and indirect effects on non-target organisms. In light of the above, this thesis aims at investigating direct and indirect effects of Bti-based mosquito control on non-target organisms within wetland food chains.Effects were examinedin studies with increasingeco(toxico)logical complexity, ranging from laboratory over mesocosm to field approaches with a focus on the non-biting Chironomidae and amphibian larvae (Rana temporaria, Lissotriton sp.).In addition, public acceptance of environmentally less invasive alternative mosquito control methods was evaluated within surveys among the local population.
Chironomids were the most severely affected non-target aquatic invertebrates. Bti substantially reduced larval and adult chironomid abundances and modified their species composition. Repeated exposures to commonly used Bti formulations induced sublethal alterations of enzymatic biomarkers activityin frog tadpoles. Bti-induced reductions of chironomid prey availability indirectly decreased body size of newts at metamorphosis and increased predation on newt larvae in mesocosm experiments. Indirect effects of severe reductions in midge biomassmight equally be passed through aquatic but also terrestrial food chains influencing predators of higher trophic levels. The majority ofaffectedpeople in the Upper Rhine Valley expressed a high willingness to contributefinancially to environmentally less harmful mosquito control.Alternative approaches could still include Bti applications excepting treatment of ecologically valuable areas. Potentially rising mosquito levels could be counteracted with local acting mosquito traps in domestic and urban areas because mosquito presence was experienced as most annoying in the home environment.
As Bti-based mosquito control can adversely affect wetland ecosystems, its large-scale applications, including nature conservation areas, should be considered more carefully to avoid harmful consequences for the environmentat the Upper Rhine Valley.This thesis emphasizesthe importance to reconsiderthe current practice of mosquito control and encourage research on alternative mosquito control concepts that are endorsed by the local population. In the context ofthe ongoing amphibian and insect declinesfurther human-induced effects onwetlands should be avoided to preserve biodiversity in functioning ecosystems.
Die Nachhaltigkeitsberichterstattung kann als ein zentrales Element einer konsequenten Unternehmensstrategie zur Umsetzung der gesellschaftlichen Verantwortung (Corporate Social Responsibility) angesehen werden. Um die Unternehmen bei dieser Aufgabe zu unterstützen stellt die Global Reporting Initiative (GRI) mit ihren G4 Leitlinien einen Orientierungsrahmen bereit, dessen Anwendung sich allerdings für Klein und Mittelunternehmen sehr komplex gestaltet. Ein branchenspezifisches Sector Supplement für den Weinbau existiert derzeit noch nicht.
Ziel der vorliegenden Arbeit ist es, diese Forschungslücke durch die Entwicklung weinbauspezifischer Nachhaltigkeitsaspekte und Indikatoren zu schließen, um den Betrieben eine selbstständige GRI-konforme Berichterstattung zu ermöglichen.
Der Prozess zur Identifikation wesentlicher Nachhaltigkeitsaspekte und -indikatoren erfolgt mittels Erhebungs- und Auswertungsmethoden der qualitativen Sozialforschung in Form
von Workshops, betrieblichen Vorortanalysen und Experteninterviews.
Parallel dazu erfolgt eine umfassende Analyse der weinbaulichen Wertschöpfungskette in Form einer Internet- und Literaturrecherche. Diese umfasst vorrangig die ökologischen Nachhaltigkeitsaspekte als diejenigen Bestandteile weinbaulicher Tätigkeiten, die sich sowohl positiv als auch negativ auf die Umwelt auswirken können. Anschließend erfolgt die zentrale Priorisierung der identifizieren Handlungsfelder und Nachhaltigkeitsthemen durch die Stakeholder. Zur Visualisierung der bewerteten Handlungsfelder dient das Instrument der Wesentlichkeitsanalyse.
Auf dieser Basis erfolgt die Entwicklung eines Handlungsleitfadens zur Erstellung von Nachhaltigkeitsberichten in der Weinwirtschaft. Hiermit erlangen Weingüter die praktische Kompetenz ein eigenes Nachhaltigkeitsreporting anzugehen.
Im Rahmen der Arbeit wurde auch ein elektronisches Tool entwickelt, das den Betrieben die Möglichkeit eröffnet, betriebliche Umweltaspekte zu erfassen und zu bewerten. Gleichzeitig wird den Anwendern damit die Generierung eines überbetrieblichen Vergleichs der Umweltleistung ermöglicht (Benchmarking).
Eine weitere Forschungsfrage der vorliegenden Arbeit beschäftigt sich mit der Biodiversitätserfassung und -bewertung für Rebland. Hintergrund sind die bisher nur geringen Funde auf der durch das Bundesamt für Naturschutz festgelegten Kennartenlisten bzw. den HNV-Stichprobenflächen (High nature value farmland-Indikator) für Rebland.
Hierzu wurde mittels Geoinformationssystemen das Artenvorkommen in rheinland-pfälzischen Weinanbaugebieten analysiert und 30 Pflanzenarten als Indikatorarten für den Weinbau abgeleitet. Ergänzend wurden weinbergstypische, geschützte Tierarten als „Bonusarten“ identifiziert. Die Indikatorarten werden den Winzern als ein Instrument zur eigenständigen Erfassung der Biodiversität in den Weinbergen dienen und im Rahmen einer Nachhaltigkeitsberichterstattung herangezogen werden können.
Groundwater is essential for the provision of drinking water in many areas around the world. The ecosystem services provided by groundwater-related organisms are crucial for the quality of groundwater-bearing aquifers. Therefore, if remediation of contaminated groundwater is necessary, the remediation method has to be carefully selected to avoid risk-risk trade-offs that might impact these valuable ecosystems. In the present thesis, the ecotoxicity of the in situ remediation agent Carbo-Iron (a composite of zero valent nano-iron and active carbon) was investigated, an estimation of its environmental risk was performed, and the risk and benefit of a groundwater remediation with Carbo-Iron were comprehensively analysed.
At the beginning of the work on the present thesis, a sound assessment of the environmental risks of nanomaterials was impeded by a lack of guidance documents, resulting in many uncertainties on selection of suitable test methods and a low comparability of test results from different studies with similar nanomaterials. The reasons for the low comparability were based on methodological aspects of the testing procedures before and during the toxicity testing. Therefore, decision trees were developed as a tool to systematically decide on ecotoxicity test procedures for nanomaterials. Potential effects of Carbo-Iron on embryonic, juvenile and adult life stages of zebrafish (Danio rerio) and the amphipod Hyalella azteca were investigated in acute and chronic tests. These tests were based on existing OECD and EPA test guidelines (OECD, 1992a, 2013a, 2013b; US EPA, 2000) to facilitate the use of the obtained effect data in the risk assessment. Additionally, the uptake of particles into the test organisms was investigated using microscopic methods. In zebrafish embryos, effects of Carbo-Iron on gene expression were investigated. The obtained ecotoxicity data were complemented by studies with the waterflea Daphnia magna, the algae Scenedesmus vacuolatus, larvae of the insect species Chironomus riparius and nitrifying soil microorganisms.
In the fish embryo test, no passage of Carbo-Iron particles into the perivitelline space or the embryo was observed. In D. rerio and H. azteca, Carbo-Iron was detected in the gut at the end of exposure, but no passage into the surrounding tissue was detected. Carbo-Iron had no significant effect on soil microorganisms and on survival and growth of fish. However, it had significant effects on the growth, feeding rate and reproduction of H. azteca and on survival and reproduction in D. magna. Additionally, the development rate of C. riparius and the cell volume of S. vacuolatus were negatively influenced.
A predicted no effect concentration of 0.1 mg/L was derived from the ecotoxicity studies based on the no-effect level determined in the reproduction test with D. magna and an assessment factor of 10. It was compared to measured and modelled environmental concentrations for Carbo-Iron after application to an aquifer contaminated with chlorohydrocarbons in a field study. Based on these concentrations, risk quotients were derived. Additionally, the overall environmental risk before and after Carbo-Iron application was assessed to verify whether the chances for a risk-risk trade-off by the remediation of the contaminated site could be minimized. With the data used in the present study, a reduced environmental risk was identified after the application of Carbo-Iron. Thus, the benefit of remediation with Carbo-Iron outweighs potential negative effects on the environment.
Sediment transport contributes to the movement of inorganic and organic material in rivers. The construction of a dam interrupts the continuity of this sediment transport through rivers, causing sediments to accumulate within the reservoir. Reservoirs can also act as carbon sinks and methane can be released when organic matter in the sediment is degraded under anoxic conditions. Reservoir sedimentation poses a great threat to the sustainability of reservoirs worldwide, and can emit the potent greenhouse gas methane into the atmosphere. Sediment management measures to rehabilitate silted reservoirs are required to achieve both better water quantity and quality, as well as to mitigate greenhouse gas emissions.
This thesis aims at the improvement of sediment sampling techniques to characterize sediment deposits as a basis for accurate and efficient water jet dredging and to monitor the dredging efficiency by measuring the sediment concentration. To achieve this, we investigated freeze coring as a method to sample (gas-bearing) sediment in situ. The freeze cores from three reservoirs obtained were scanned using a non-destructive X-Ray CT scan technique. This allows the determination of sediment stratification and character-ization of gas bubbles to quantify methane emissions and serve as a basis for the identi-fication of specific (i.e. contaminated) sediment layers to be dredged. The results demon-strate the capability of freeze coring as a method for the characterization of (gas-bearing) sediment and overcomes certain limitations of commonly used gravity cores. Even though the core’s structure showed coring disturbances related to the freezing process, the general core integrity seems to not have been disturbed. For dredging purposes, we analyzed the impact pressure distribution and spray pattern of submerged cavitating wa-ter jets and determined the effects of impinging distances and angles, pump pressures and spray angles. We used an adapted Pressure Measurement Sensing technique to enhance the spatial distribution, which proved to be a comparatively easy-to-use meas-urement method for an improved understanding of the governing factors on the erosional capacity of cavitating water jets. Based on this data, the multiple linear regression model can be used to predict the impact pressure distribution of those water jets to achieve higher dredging accuracy and efficiency. To determine the dredging operational efficien-cy, we developed a semi-continuous automated measurement device to measure the sediment concentration of the slurry. This simple and robust device has lower costs, compared to traditional and surrogate sediment concentration measurement technolo-gies, and can be monitored and controlled remotely under a wide range of concentrations and grain-sizes, unaffected by entrained gas bubbles
Grapevine growers have struggled with defending their crops against pests and diseases since the domestication of grapevine over 6000 ears ago. Since then, new growing methods paired with a better nderstanding of the ecological processes in the vineyard ecosystem continue to improve quality and quantity of grape harvests. In this thesis I am describing the effects of two recent innovations in viticulture on pest and beneficial arthropods in vineyards; Fungus-resistant grapevine cultivars (PIWIs) and the pruning system semi-minimal pruned hedge (SMPH). The SMPH pruning system allows for a drastic reduction of manual labor in the vineyard, and PIWIs are resistant to two of the most common fungal diseases of grapevine and therefore allow a drastic reduction of fungicide applications compared to conventional varieties. Heavy use of pesticides is linked to a number of problems, including pollution of waterways, negative effects on human health, and biodiversity loss. Here, I studied the effects of fungicide reduction and minimal pruning on arthropods that are beneficial for natural pest suppression in the vineyard ecosystem such as predatory mites, spiders, ants, earwigs, and lacewings. All of these groups either benefitted from the reduction of fungicide sprayings or were not significantly affected. Structural changes in the canopy of SMPH grapevines altered the microclimate in the canopy which in turn influenced some of the arthropods living in it. Overall, my findings suggest that PIWIs and SMPH, both in combination or separately, improve conditions for natural pest control. This adds to other advantages of these innovative management practices such as a reduction in production cost and a smaller impact on the environment.