Refine
Year of publication
Document Type
- Bachelor Thesis (75)
- Diploma Thesis (42)
- Master's Thesis (33)
- Doctoral Thesis (5)
- Study Thesis (1)
Keywords
- Augmented Reality (8)
- Computergrafik (8)
- Computervisualistik (7)
- GPGPU (5)
- Raytracing (5)
- Android (4)
- Computergraphik (4)
- Line Space (4)
- OpenGL (4)
- Analyse durch Synthese (3)
Institute
Simulation of fractures
(2014)
Real-time computing often avoids the simulation of fractures due to its complexity. The field of engineering science provides methods to create these simulations to improve games and other applications. Steadily rising computer capacities allow suitable simulations on a real-time basis and make this aspect increasingly interesting. The topic and aim of this research is to simulate fractures of stiff bodies. The primary objective is the physical plausibility and performance of the application. This thesis analyses the potential of computer science to realize the simulation of fractures.
Three existing as well as one self-created were implemented and analysed. The works "Real time simulation of deformation and Fracture of stiff material" from Müller et al., "real time simulation of Brittle Fracture using Modal analysis" from Glondu et al. and "Fast and Controllable simulation of the Shattering of Brittle Objects" from Smith et al. form the basis of this thesis. The introduced methods use different computation of forces and fractures. The developed procedure uses the idea of generating secondary breaks. The approaches were implemented based on the Bullet physics-engine. The results of the work show that physically based breaks are realizable on a real-time basis.
The analysis of the physical methods demonstrates that their performance mainly depends on the constitution of the used objects. This thesis shows that the further investigation of this topic can discover new possibilities. The improvement of the realism in virtual worlds can be achieved by executing physically plausible methods.
In this bachelor thesis a tangible augmented reality game was developed, which should have a additional benefit compared to conventional computer or augmented reality games. The main part of the thesis explains the game concept, the development and the evaluation of the game. In the evaluation the flow-experience, as measurement for the games" amusement, was analysed with a user test and the developed game was compared with other smartphone games. Also augmented reality, tangible user interface and tangible augmented reality was introduced and the advantages and disadvantages was explained. The history of augmented reality was introduced too.
In no field of computer science has the hardware developed as rapidly as in the field of computer graphics. Today, we can display complex, geometric scenes in real time in immersive systems and also integrate elaborate simulations.
The aim of this work is to realize the simulation of paint splashes in a virtual world. For this purpose, an application will be implemented with the help of Unity, that uses three different techniques to color the environment with the help of paint splashes. Based on this application, the limits and possibilities of the techniques in virtual environments are examined more closely.
This examination shows that an inverse projection produces the best results.
Bildsynthese durch Raytracing gewinnt durch Hardware-Unterstützung in Verbraucher-Grafikkarten eine immer größer werdende Relevanz. Der Linespace dient dabei als eine neue, vielversprechende Beschleunigungsstruktur. Durch seine richtungsbasierte Natur ist es sinnvoll, ihn in andere Datenstrukturen zu integrieren. Bisher wurde er in ein Uniform-Grid integriert. Problematisch werden einheitlich große Voxel allerdings bei Szenen mit variierbarem Detailgrad. Diese Arbeit führt den adaptiven Linespace ein, eine Kombination aus Octree und Linespace. Die Struktur wird hinsichtlich ihrer Beschleunigungsfähigkeit untersucht und mit dem bisherigen Grid-Ansatz verglichen. Es wird gezeigt, dass der adaptive Linespace für hohe Grid-Auflösungen besser skaliert, durch eine ineffiziente GPU-Nutzung allerdings keine optimalen Werte erzielt.
Artificial neural networks is a popular field of research in artificial intelli-
gence. The increasing size and complexity of huge models entail certain
problems. The lack of transparency of the inner workings of a neural net-
work makes it difficult to choose efficient architectures for different tasks.
It proves to be challenging to solve these problems, and with a lack of in-
sightful representations of neural networks, this state of affairs becomes
entrenched. With these difficulties in mind a novel 3D visualization tech-
nique is introduced. Attributes for trained neural networks are estimated
by utilizing established methods from the area of neural network optimiza-
tion. Batch normalization is used with fine-tuning and feature extraction to
estimate the importance of different parts of the neural network. A combi-
nation of the importance values with various methods like edge bundling,
ray tracing, 3D impostor and a special transparency technique results in a
3D model representing a neural network. The validity of the extracted im-
portance estimations is demonstrated and the potential of the developed
visualization is explored.